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ABSTRACT

The first author introduced a Riemannian invariant denoted by é and
proved in [4] that every n-dimensional submanifold of the complex
hyperbolic m-space CH™ (4c) of constant holomorphic sectional curva-
ture 4c < 0 satisfies a basic inequality

2
né(n—2) o, 1

< ——FH*+ =(n+1)(n—-2)c

< Gy B+ g D=2,

where H? denotes the squared mean curvature of the submanifold. The
main purpose of this paper is to completely classify proper C R-submani-
folds of complex hyperbolic spaces which satisfy the equality case of this
inequality.
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1. Introduction

For a Riemannian n-manifold M™ denote by K () the sectional curvature of a
plane section 7 C T,M", p € M™. For an orthonormal basis ey, ..., e, of the
tangent space T,M™, the scalar curvature 7 at p is defined by

(1.1) T=ZK(e,~/\ej).

i<j
For each point p € M™, let (inf K)(p) = inf { K(r): plane sections 7 C T,M™ }.
Then inf K is a well-defined function on M™. Let §p; denote the difference
between the scalar curvature and inf K, i.e.,

(1.2) dm(p) = 7(p) — inf K(p).

It is obvious that s is a well-defined Riemannian invariant which is trivial when
n < 2 (cf. [3, 4] for details).

For a submanifold M™ in a real space form R™(c) of constant sectional
curvature c, the following basic inequality involving the intrinsic invariant s
and the squared mean curvature was first established in [3]:

2
(1.3) Sar < %Hm + %(n +1)(n - 2)e,
where H? denotes the squared mean curvature.

Let M be a submanifold in a Kaehler m-manifold M. A subspace V C T,M
is called totally real if JV C TPLM , where T, M and TI;LM denote the tangent
space and the normal space of M at p, respectively. The submanifold M is called
totally real if each tangent space of M is totally real. A totally real submanifold
M in M is called Lagrangian if dimg M = dim¢ M. A submanifold M of M
is called a CR-submanifold if there exists on M a differentiable holomorphic
distribution D such that its orthogonal complement D+ C TM is a totally real
distribution [1]. A CR-submanifold is called proper if it is neither totally real
(i.e., D+ = TM) nor holomorphic (i.e., D = TM).

It was remarked in [6] that the exact proof of (1.3) given in [3] yields the
same inequality for totally real submanifolds in a complex space form of constant
holomorphic sectional curvature 4c, too. Moreover, it was proved in [4] that
inequality (1.3) holds for arbitrary submanifolds of the complex hyperbolic m-
space CH™ (4c) of constant holomorphic sectional curvature 4c < 0.

For simplicity, an n-dimensional submanifold of CH™ (4c) is said to satisfy
the basic equality if it satisfies the equality case of (1.3) identically.
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Real hypersurfaces of a Kaehler manifold are proper C R-submanifolds. It was
proved in [4] that a real hypersurface of a complex hyperbolic m-space with m > 2
satisfies the basic equality if and only if the real hypersurface is an open portion
of a horosphere in a complex hyperbolic plane.

In this paper we completely classify proper C' R-submanifolds of complex hyper-
bolic spaces which satisfy the basic equality. Moreover, we are able to establish
the explicit representation of such submanifolds in an anti-de Sitter space time
via Hopf’s fibration.

2. Preliminaries

Let M be a pseudo-Riemannian manifold equipped with a pseudo-Riemannian
metric §. Denote by V the metric connection of M and by (, ) the inner product
induced from the metric g. A tangent vector X to M is called space-like (respec-
tively, light-like or time-like) if (X, X) > 0 or X = 0 (respectively, if (X, X) =0
and X # 0 or if (X, X) < 0).

Let M be a submanifold of M. If the metric tensor of M induces a pseudo-
Riemannian metric (respectively, Riemannian metric) on M, then M is called a
pseudo-Riemannian (respectively, Riemannian) submanifold of M. Let V denote
the metric connection on M with respect to the induced metric.

For vector fields X,Y tangent to the submanifold, we have the equation of
Gauss:

(2.1) VxY = VxY + h(X,Y),

v_v)here h is the second fundamental form of M in M. The mean curvature vector
H of the immersion is given by

|
H= —traceh.
n

A submanifold is said to be minimal if its mean curvature vector vanishes identi-
cally. Denote by D the linear connection induced on the normal bundle T+ M of
M in M. For each vector field £ normal to M, the Weingarten formula is given
by

(2.2) Vx€=~AcX + Dx¢,

where A is the shape operator. It is well-known that the second fundamental
form and the shape operator are related by (h(X,Y),£) = (4:X,Y).
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Denote by R and R the Riemann curvature tensors of M of M, respectively,
and by RP the curvature tensor of the normal connection D. Then the equations
of Gauss and Ricci are given respectively by

(2.3) R(X,Y; Z, W) = R(X,Y;Z, W)+(h(X, W),h(Y, Z))—(h(X, Z),h(Y, W))
and
(2.4) RP(X,Y;€,m) = R(X,Y;£,n) + ([A¢, Ap)(X),Y)

for vectors X,Y, Z, W tangent to M and £,7 normal to M.
For the second fundamental form h, we define the covariant derivative Vh of
h with respect to the connection on TM @& T+M by

The equation of Codazzi is given by
(2.6) (R(X,Y)2)* = (Vxh)(Y, Z) - (Vyh)(X, 2).

The Riemann curvature tensor of a complex space form M {4¢) of constant
holomorphic sectional curvature 4c takes the form
(2.7)
R(X,Y)Z =c{{Y,2) X — (X, 2)Y +{(JY, Z)JX — {(JX,Z)JY +2(X,JY)JZ},

where J denotes the almost complex structure of M (4c).

3. Statement of Main Theorem

Consider the complex number (m + 1)-space C7**! endowed with the pseudo-
Euclidean metric gg given by (for the details, cf. [7, 9])

(3.1) go = —dzpdZy + Z dede,
j=1

where 2z, denotes the complex conjugate of zi.
On C™*! we define

(3.2) Fz,w) = —20%0 + z 2 Wg.
k=1

Put

(3.3) HP™(_1) = {2 = (20,2, .., 2m) € CP1: (2,2) = —1},
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where ( , ) denotes the inner product on CJ**! induced from go. Then HZ™+1(—1)
is a real hypersurface of C™*! whose tangent space at z € H12m+1(—1) is given
by T, H:™*1(-1) = {w € C™*!: Re F(z,w) = 0}. It is known that HZ™*+1(—1)
together with the induced metric g is a pseudo-Riemannian manifold of constant
sectional curvature —1, which is known as an anti-de Sitter space time.
We put
H ={eCM=1}.

Then we have an Hj-action on H;™!(—1) given by 2z +> Az. At each point
z in H¥™*+1(—1), the vector iz is tangent to the flow of the action. Since go is
Hermitian, we have Re go(iz,i2) = —1. Note that the orbit is given by z(t) = e®z
and dz(t)/dt = iz(t). Thus the orbit lies in the negative definite plane spanned
by z and iz. The quotient space H>™ !/, under the identification induced from
the action, is the complex hyperbolic space CH™ (—4) with constant holomorphic
sectional curvature —4. The almost complex structure J on CH™ (—4) is induced
from the canonical almost complex structure J on C’f’“, the multiplication by
1, via the totally geodesic fibration:

(3.4) 7 H™ (1) = CH™(-4).
The main result of this paper is the following.

MAIN THEOREM: Let U be a domain of C and ¥ : U — C™! be a nonconstant
holomorphic curve in C™~!. Define z: R? x U — C7**! by

(35)  2(utw) = (—1 - %\Il(w)\il(w) +iu,—%\11(w)\il(w) + iu,\Il(w)) .

Then (z,z) = —1 and the image z(R? xU) in H}™ " is invariant under the group
action of Hl. Moreover, away from points where ¥’ (w) = 0, the quotient space
z(R? x U)/~ is a proper C R-submanifold of CH™(—4) which satisfies the basic
equality.

Conversely, up to rigid motions of CH™(—4), every proper C R-submanifold of
CH™(—4) satisfying the basic equality is obtained in such way.

Since, up to rigid motions of CH™(—4), a horosphere in CH™(—4) is a real
hypersurface defined by the equation |z; — 25| = 1, Theorem 1 can be regarded
as a natural extension of a result of [4] which states that a real hypersurface of
CH™(—4) with m > 2 satisfies the basic inequality if and only if it is an open
part of a horosphere in CH%(—4).
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4. Some lemmas
First we recall the following result from [2].
LEMMA 1: Let M be a CR-submanifold of a Kaehler manifold M. Denote by

T+ M = JDL ®v the orthogonal decomposition of the normal bundle, where D+
is the totally real distribution and v a complex subbundle of T-M. We have

(4.1) (VuZ,X) = (J(AszU), X),
(4.2) AW = AjwZ,
(4.3) AjeX = —AcJX,

for vector fields Z,W in DL, ¢ in v, U in TM and vector field X in the
holomorphic distribution D.

We also need the following two results from [4].

LeEMMA 2: Let z: M — CH™(—4) be an isometric immersion of a Riemannian
n-manifold M (n > 3) into the complex hyperbolic m-space CH™(—4). Then
n%(n —2)

(4.4) oy < 5

Equality in (4.4) holds at a point p € M if and only if there exist an ortho-
normal basis {e1,...,e,} of T,M and an orthonormal basis {ent1,...,e2m} Of
T;-M such that (a) the subspace spanned by e3, ..., ey is totally real, (b) K(ey A
e;) = inf K at p, and (c) the shape operators A, = A, , r=n+1,...,2m take
the following forms:

R, 0 ... 0
R, hi, 0 ... O

(4.5) A,=10 0 p .. O r_nii1.. 2m,
0 0 0 ... p,

where pi, = hi; + hi,.

LEMMA 3: Let z: M — CH™(—4) be an isometric immersion of a Riemannian
n-manifold M (n > 3) into the complex hyperbolic m-space CH™(—4). If there
exists a point p € M such that

_n*(n-2)

(4.6) b = T H %(n +1)(n—2),
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at p, then m > n—1. Furthermore, if m = n -1 and (4.6) holds identically, then
M is a CR-submanifold.

We also need the following lemmas.

LeMMA 4: Let z: M — CH™{—4) be a CR-submanifold with dimension n > 3.
If M satisfies the basic equality, then one of the following three cases must occurs:
(1) n=3,
(2) M is a minimal proper C R-submanifold, or
(3) M is a totally real submanifold.

Proof: Assume that M is a C' R-submanifold of CH™(—4). Then, according to
Lemma 2, either M is totally real or D =: Span {ej, e2} defines the holomorphic
distribution, where {ej,...,en} is an orthonormal frame field on M mentioned in
Lemma 2. We denote by D the totally real distribution spanned by e, ..., e,.

Suppose that n > 3 and M is not totally real. Then without loss of generality
we may assume es = Jej.

We divide the proof into two cases.

CASE 1: m = n — 1. In this case, we have T+ M = JDL. If we choose e3
in such way that Jes = e,y; which is parallel to the mean curvature vector,
then p, = 0 for r = n 4+ 2,...,2m. Therefore, from (4.2) and (4.5), we obtain
Unt1€4 = Ajese4 = Aje,es = 0 which implies that M is minimal.

CASE 2: m > n. In this case, there is a complex subbundle v of the normal
bundle perpendicular to JD* such that 7+ M = JD* @ v. From (4.3) we know
that, for each vector £ € v, we have

(4.7) AJgel = —Ageg, AJ£€2 = Afel.
Therefore
(4.8) (Aseer,e1) + (Aseea, e2) = —(Ageg,e1) + (Ager,e2) =0,

N
which implies that the mean curvature vector H lies in JDL. Hence, we may

_) 3
choose e3 such that Jes is parallel to H. Thus, by applying (4.2) again, we also

have pi, 1164 = Ajeseqa = Aje,e3 = 0. Therefore, in this case M is also a minimal
proper C R-submanifold of CH™(—4). 1
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LEMMA 5: Let z: M — CH™(—4) be a C R-submanifold. If M satisfies the basic
equality and dim M > 3, then M is a totally real submanifold.

Proof:  Assume that M is a proper CR-submanifold of CH™(—4) which
satisfies the basic equality and dim M > 3. Denote by D = Span {ej,es} the
holomorphic distribution. Then, by applying (4.1), Lemma 2 and Lemma 4, we

have
(Vegel - Vele% Z) = (Velz,e2) - (VEQZ,CQ

= (J(Ajze1),e2) — (J(Aszez),e1)

= (h{e1, 1) + h{ez,e2), JZ) = 0.
Therefore, [e2, e;] € D and hence D is integrable. From Lemma 2, we also have
h(D,D*) = {0}, i.e., M is mixed totally geodesic. Hence, M is a mixed foliate
C R-submanifold of CH™(—4) (cf. [1, 2]). The lemma now follows from a theorem

of Chen and Wu [8] which states that every mixed foliate C'R-submanifold in a
complex hyperbolic space is non-proper. 1

LEMMA 6: Let z: M3 — CH™(—4) be a 3-dimensional proper C R-submanifold
—
of CH™ (—4). If M satisfies the basic equality, then He JDL.

Proof: If m = 2, there is nothing to prove. So, we assume m > 2. Hence, there
is a complex subbundle v of the normal bundle perpendicular to JD* such that
TJ'IW_) =JDt dv.

If H¢ JDL, then there exists a nonzero normal vector field £ € v such that

5
(4.9) H=alJes + ¢,

where « is a function and JD = Span {Je3}. Without loss of generality, we
may assume ez = Je;. As in Case 2 of Lemma 5, we deduce from (4.3) that

(4.10) (Agel,el) + (Agez,eg) = (AJ£€2,61> — (AJgel,ez) =0.

o
Applying (4.10) and Lemma 2, we obtain trace A¢ = 0, which implies (H,§) = 0.

>
This is a contradiction. Therefore, H lies in JD*. | |

LEMMA T: Let z: M — CH™(—4) be a CR-submanifold with n = dim M > 3.

If M satisfies the basic equality, then one of the following two cases must occurs:
—

(1) n = 3, M is a proper CR-submanifold with HE JD' and, moreover,

the holomorphic distribution D is non-integrable on every non-empty open
subset of M.
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o
(2) n >3 and M is a totally real submanifold with H1 JD+.

Proof: Under the hypothesis, if M is a proper CR-submanifold of CH™(—4),
then Lemma 5 implies that either n = 3 or M is totally real.

If n is 3 and M is not totally real, then Lemma 6 implies that I_:; € JD .
In this case, we deduce from (4.3) that the holomorphic distribution of M is
non-integrable on every non-empty open subset of M.

A
If M is totally real, we have H L JD=, according to Theorem 1.2 of [5]. ]

LEMMA 8: Let : M3 — CH™(—4) be a 3-dimensional proper C R-submanifold
of CH™(—4). If M satisfies the basic equality, then M has parallel mean curva-
-

ture vector, i.e.,, DH= 0.

5
Proof: Under the hypothesis, we have He JD' according to Lemma 6. Thus,
Lemma 2 implies h(X,e3) € JD' for any X tangent to M. Hence, using

—Aje, X + Dx(Jes) = Vx(Jes) = J(Vxes) + h(X, e3),

we obtain Dx (Je3) € JD* for any X € TM. Since JD* is of rank one and Je3
is of unit length, this yields D(Jes) = 0. Thus, Jey is a parallel normal vector
field. Since ?I is parallel to Jeg, it suffices to prove that the mean curvature
vector field has constant length.

If m = 2, our assumption and Theorem 6 of [4] implies that M is an open
part of a horosphere in CH?(—4). In this case, by a direct computation we have
?I = %J e3. Therefore, M has parallel mean curvature vector.

If m > 3, then T+ M = JD' @ v for some complex subbundle . Let £ be a
unit vector in v and X,Y vectors tangent to M. Then we have

(4.11) R(X,Y;Jes, &) = RP(X,Y; Jes,§) = 0

by virtue of (2.7) and D(Jeg) = 0. Hence, the equation of Ricci yields
[Ajes, Ag] = 0 for any £ € v. By Lemma 2, this implies that with respect
to a suitable orthonormal frame field with e; = Je; and e4 = Jes the shape
operators of M in CH™ (—4) either take the form:

0 Wy, R, 0
0], A=|n, -n;, 0}, r=5,...2m,
2a 0 0 0

(412) Ay, =

OO R
o8 o
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or take the form:

a 0 0 11 0 0
(4.13) Aje,={0 b 0], A= 0 -k} 0}, r=5,...,2m,
0 0 p 0 0 0

where a # band a+ b= pu.

If the shape operators take the form of (4.13), then, for any £ € v, (4.3) yields
Ajeer = —Agey. Combining this with (4.13) we obtain As = -+ = Ay, = 0.
Since Jes is a parallel normal vector field, this implies that M is contained in
a totally geodesic complex hyperbolic plane CH?(—4) of CH™(—4). Thus, our
assumption implies that M is an open part of a horosphere. Therefore, I—} = %J e3
which is a parallel normal vector field.

If the shape operators take the form of (4.12), there exists an orthonormal
frame field {e1,e2,...,ea,} such that the second fundamental form satisfies

(4.14) h(er,e1) = adJes + €, h(ei,e2) = ¢JE,  hley,e3) =0,
hiez,e2) = aJes — ¢€, h(ez,e3) =0, h(es, e3) = 2ales,

where ¢ is a function and £ is in v.
Using (4.14) and D(Je3) = 0, we get

(4.15) (Ve, k) (€3, e3) = 2(e1a)Jes,
(Vesh)(e1,€3) = —2a(Vezer,e3)Jez — (Veges, er)(ates + ¢€) — ¢(Ve,es, €2)JE.

The equation of Codazzi, (2.7) and (4.15) yield
(416) ¢<v8363781) = ¢(V8363a €2> =0.

If $ = 0 on M, D(Je3) = 0 and (4.14) imply that M is contained in a totally
geodesic .complex hyperbolic plane CH2(—4). Thus, M is an open part of a
horosphere. Hence, we know that M has parallel mean curvature vector as before.

If ¢ £ 0, we put V = {p € M: ¢(p) # 0}. Then (4.16) implies V.,e3 = 0 on
V. Hence, by using D(Jes) = 0, (4.16) and the equation of Codazzi, we obtain
eia = 0. Similarly, we have eaa = 0. Therefore, [e1,e3]a = 0.

On the other hand, since D = Span {e;,eq} is non-integrable on every non-
empty open subset of M according to Lemma 7, the Lie bracket [e1,ez] has a
non-trivial component in the direction of e3 at every point in a dense open subset
of M. Therefore, the condition [e1,e2]a = 0 implies that eza = 0 by continuity.
Consequently, the function a must be a constant. Combining this we obtain
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.
D(Jez) = 0, thus we conclude that the mean curvature vector H= %aJe;; is
parallel in the normal bundle. [ |

A submanifold is said to be linearly full in CH™{—4) if it does not lie in any
totally geodesic complex hypersurface of CH™ (—4).

LEMMA 9: Let z: M3 — CH™(—4) be a linearly full 3-dimensional proper C R-
submanifold of CH™(—4). If m > 3 and M satisfies the basic equality, then,
with respect to some suitable orthonormal frame field {e;, ez, ..., €2, }, we have

(4.17) hiei,e1) = Jez + ¢€, hler,e2) = ¢JE,  hler,e3) =0,
h(ez,e2) = Jez — @€, h(ez,e3) =0, h(es, e3) = 2Jes,

Ve, e1 = aez, Ve e =—ae; —e3, Vees=ey,
(4.18) Ve,e1 = —Bez +e3, Ve,ea=—Pfe1, Ve,e3=—e,

Vese1 = ve2, Veea = —7ve1, Vee3=0,

where «, 3,7, ¢ are functions such that ¢ # 0 and £ is in v. In particular, M has
constant squared mean curvature H? = 16/9.

Proof: Let z: M® — CH™(—4) be a linearly full 3-dimensional proper CR-
submanifold of CH™ (—4) satisfying the basic equality. If m > 3, then from the
proof of Lemma 8 we know that, with respect a suitable orthonormal frame field
with e = Je; and eq = Jes, the second fundamental form satisfies

(4.19) h(ei,e1) = aJes + ¢€, h(er,ez) = ¢JE, h(er,e3) =0,
h(ez,e2) = aJes — @€, h(es,e3) =0, h(es,es) = 2ales,

where ¢ is a nonzero function, a is a constant, and £ is in v.
From (4.1) of Lemma 1 and (4.19) we have

(Vese1,e3) = —(Ve,e3,e1) = (Ajeye1,€2) =0,

(Ve,2,€3) = —(Ve,€3,€2) = —(Aje,e1,61) = —a,
which implies
{(4.20) Ve,€1 = aeg, Ve,e3=—ae; —aes, Vg ez =aey,
for some function «. Similarly, we also have

(4.21) Ve,e1=—Pes+aes, Veea=—PBe;, V,e3=—ae,
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for some function 8. Using (4.19), (4.20) and (4.21), we find

(4.22) (Ve h)(ea,e3) = a>Jes + adt,
(Ve h)(e1,e3) = —a®Jes + agt.

On the other hand, (2.7) yields R(ey, ez, €3, Jes) = 2. Thus, by (4.22) and the
equation of Codazzi, we obtain a? = 1. Replace e3 by —e3 if necessary; we have
a = 1. Thus, (4.19) yields (4.17). From (4.20), (4.21) and a = 1, we obtain the
first six equations in (4.18}.

Using (4.1) and (4.19) we get (Veges,€;) = (J(Ajese3),€i) = 0 for i = 1,2.
Hence, V. e3 = 0 which yields the last three equations of (4.18). |

5. Proof of the Main Theorem

Let U be a domain of C and ¥: U — C™! be a nonconstant holomorphic curve
in C™~1 such that ¥'(w) is nowhere zero. Define z: R? x U — C7**! by

(5.1)  z(u,t,w) = <——1 - %\Il(w)‘il(w) + u, ——%\Il(w)\il(w) + iu, \Il(w)> e'.

Then (z,z) = —1. Thus, the image z(R? x U) of R? x U under z is contained in
the anti-de Sitter space time HZ™1(-1).
Let w = z + iy denote the standard coordinate of U C C. Then

8 8 .8 8 .8 .08

" 95 By ow o0
We obtain from (5.1) and (5.2) that

(5.2)

2y = (4,3,0)e, 2z =iz,
_ _ 1 _ — 3
(5.3) Za =(..%(‘1:'t11 + W), —5(\1:'\1: + W), ¥)e*,
1 — _ _ - .
2 =i(—5 (W'Y - VT, _%(\W _ ), W)et,
Zuu =0, 2yt =12y, Zug = 2uy =0,
(54) Rt = —2, 2tz = izx, 2y = iZy
P (_%(\11"@ + 20/ + U”), —%(\I/"\i: + 20 + W), 9")et,
- -1 _ - .
Zoy = i(%(\w" — '), 5(\IJ\I:" — U"¥), ¥")e",

Zyy = (%(\I‘”\I} — ¥ + T), %(\If”\if — 20 + BT, —0")e.



Vol. 110, 1999 CR-SUBMANIFOLDS 353

Let A = |¥'| and

1 -
(6.5) Fy = X (zz - —z(\IJ\IJ' ¥ \Il)zu) , Ey=

Es=tiz+4+ 2y = 2t + 24, FE4=12z=2.

( %(w' + U \Il)zu) ,

S | =

Then Ei, Es, E3, E4 are orthonormal tangent vector fields such that Ey = iF;
and iF3,iF4 are normal vector fields.

It follows from (5.3), (5.4), (5.5) and a straightforward computation that the
second fundamental form h of z(R? x U) in CT**! satisfies

h(Ey,Ey) = U0+ 200 + B8")iz, + (0,0,20"e) 1},
2,\2

h(Ey, By) = —p{i ("% — 0I")iz, +(0,0,2i0"e*)*},
(56) h(EQ,E2 /\2 {(\I’”\I/ 2\11,\I”+ \I/\I/”)’Lzu + (0 0 2\1,/; zt) }
h(Ey, E3) = h(Es, Es) = h(Ey, E4) = h(Ey, Eg) =0,
h(Es,E3) = 2iF3 —iEs, h(Es, Es) =iEs, h(Es,Es) =iEs,

where {---}* denotes the normal component of {---}.
On the other hand, from (5.3), (5.4), (5.5) and (5.6), we have

(h(Ey, By),iEs) = (h(En, E1),iEq) = 1.

Therefore, there exist a function ¢ and a unit normal vector field §~ perpendicular
to iF3 and iF4 such that

(5.7) h(Ey, Ey) = iE3 — iE4 + ¢€.

From (5.6) and (5.7) we obtain

(5.8) (0,0,¥"et)t = —%(W" V' W)iz, + A2gE.
Similarly, we have

(5.9) h(Ez, Ez) =iE3 — iEy ~ ¢€.

(5.10) (0,0,:¥"e?) L = (w” V" Wiz, + iN2HE.

Since iz is always tangent to z(R? x U), the image z(R? x U) in H2™+1(~1) is
invariant under the group action of Hi. Hence, z(R? x U) is projectable via the
Hopf’s fibration : H2™*1(~1) — CH™(—4). It is known that the Hopf fibration



354 B.-Y. CHEN AND L. VRANCKEN Isr. J. Math.

7 is a Riemannian submersion. The image 7(z(R? xU)) is a 3-dimensional proper
C R-submanifold of CH™(—4) whose holomorphic distribution D is spanned by
m«(E1), 7 (E2) and whose totally real distribution D+ is spanned by =, (E3).

It follows from (5.5)~(5.10) that the second fundamental form h of 7(2(R? xU))
in CH™(—4) satisfies

(6.11)  h(ei,e1) = Jes + @&, h(er,e2) = ¢JE, h(ez,ez) = Jez — @&,
h(e1,e3) = h(ez,e3) =0, h(es, e3) = 2Je,

where £ = m,(£) is a normal vector field perpendicular to Jes, e; = m.(E})
and e; = m(E2). Therefore, by applying Lemma 2, we conclude that the 3-
dimensional proper C R-submanifold 7(z(R2 x U)) in CH™ (—4) satisfies the basic
equality.

Conversely, suppose that M is a proper CR-submanifold of CH™(—4) with
dim M > 3 which satisfies the basic equality. Then, according to Lemma 7,
the dimension of M is equal to 3. Moreover, with respect to some suitable or-
thonormal frame field {eq, ey, ..., €2}, the second fundamental form h and the
Riemannian connection V of M satisfy (4.17) and (4.18), respectively. Further-
more, by Lemma 8, we have D(Jeg) = 0.

Let M = 7~ Y(M) denote the inverse image of M via the Hopf fibration
x: H¥™*1 5 CH™(—4). Then M is a principal circle bundle over M with
time-like totally geodesic fibers. Let z: M — H2™*1(—1) c C™*! denote the
immersion of M in C;n+1.

Let V and V denote the metric connections of C7"** and Hi™*!(—1), respec-
tively. We denote by X* the horizontal lift of a tangent vector X of CH™(—4)
with respect to V. Then we have (cf. [7, 9])

(5.12) Vx-Y* = (VxY)* + (W(X,Y)) + (JX,Y)V + (X,Y)z,
(5.13) Vx-V =VyX* = (JX)*,
(5.14) VvV = —2,

for vector fields X, Y tangent to M, where z is the position vector of M in Cfm“
and V =iz € T,HZ™1(-1).

Let E;, F», E;5 be the horizontal lifts of e;, g, e3, respectively and let E; = iz,
and hence z = iF4. Then, from Lemma 9, (5.12), (5.13) and (5.14), we obtain

(5.15-a) Vi, E1 = aEy + iE3 + ¢6* — iEy,
(5.15-b) Vi, Ez = —aE; — By + ¢i€” + Ey,
(5.15-c) Vi, B3 = Vg, By = By,
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(5.15-d) Vi, By = —BE; + E3 + ¢it* — Ey,
(5.15-¢) Vi, By = BE, +iE3 — $¢* — iEy,
(5.15-f) Ve, Es =Vg,Ey = —Ey,
(5.15-g) Vg, B = vEs,

(5.15-h) Vg, B2 = —vE1,

(5.15-1) Vi, E3 = 2iF3 — iEj,
(5.154) ‘~7E3E4 = iF3,

(5.15-k) : Vi, B = By,

(5.15-m) Vg,Er = —Ex,

(5.15-n) Vi, Es = iE;,

(5.15-0) Ve, Ey=iEy.

Equations (5.15-b), (5.15-c), (5.15-d) and (5.15-f)-(5.15-0) imply that the
distribution D; spanned by Ei, E3, E3 — E4 is integrable. The distribution D,
spanned by Ej is clearly integrable, since it is of rank one. Hence, there ex-
ist coordinates {s,t,¢,v} such that 8/9s,8/8q and 3/8v are tangent to integral
submanifolds of Dy, 8/0s = E3 — E4 and 0/8t = Es.

Applying (5.15-c), (5.15-f), (5.15-1), (5.15-j), (5.15-n) and (5.15-0), we get

Ve, (Es — E4) = Vg, (Es — Bg) = Vg, g, (Es — Ey) =0.

Hence, along each integral submanifold of Dy, Z =: E5 — Ey is a constant light-
like vector in C7**!. Moreover, from (5.15-i) and (5.15-j), we have Vg, Z = iZ.
Since E3 = 8/0t, we get 8Z/8t = iZ. Solving this differential equation yields

(5.16) Z=e%Zy on M,

where Zj is a light-like constant vector. Without loss of generality, we may
assume Zg = (4,1,0,...,0) € C/*L.

Let M; be an integral submanifold of D;. Without loss of generality, we may
assume that M, is defined by ¢ = 0. From (5.15-a)~(5.15-f), we obtain

(5.17-a) Ve Er=oaFy+ ¢ +1iZ,
(5.17-b) Vi, By = —aB) +i¢¢" - Z,
(5.17-c) Ve Z=Vg5Z=0,
(5.17-d) Ve, B1 = —BE; +igt" + Z,

(5.17-e) Vi, E» = BE) — ¢¢* +iZ,
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(5.17-) Vg & = —¢E; + Vg, &,
(5.17-g) VzE = (y - 1)E,
(5.17-h) VzE; = (1—7)E,
(5.17-1) VzZ =0,
(5.17-)) VE,£* = By + Vi, ¢,
(5.17-k) V€ = Ve,

where V+ denotes the normal connection of M; in C;™*.
Along My we have that

(Zo,z) = (B3 — E4,2) = (B3 — B4, —iEy) =0,
(518) (Zo,i2> = (E3 - E4,iz) = <Eg - E4,E4> = -1,
(Zo, Zo) = (2o, E1) = (Zo, Ea) = (Z0, VxY) =0,
where X,Y € Span {Zy, E1, E3}. Since Zj is a constant vector along M, the

above equations imply that M; lies in a complex hyperplane which is parallel to
{Zo}*. Since {Zo}+ is spanned by

(i,4,0,...,0), (0,0,1,0....,0),...,(0,0,0,...,0,1),
it follows that we can write

(5.19) 2(s,0,w) =f(s,w)(%,1,0,...,0) + ¢(1,-1,0,...,0)
+ (0,0, \Ill(w) N ,\I/m._l(w)),

where ¢ is a constant determined by the initial conditions and f,¥q,..., ¥y
are functions.

Let 1 denote the map which is the projection of z: M; — (C'l'”'l onto the
complex Euclidean (m — 1)-subspace C™ ! spanned by the last m — 1 standard
coordinate vectors €s,. .., €y,41 Of (CT'H. Then we have

¥u(E3 — Eq) = proj (2.(E3 — E4)) =0,
which follows from the fact that Z = F3 — E; is constant along M; and
Z(s,0,w) = Zy = (4,1,0,...,0).

Since 2.(E2) = tz«(E1), we have i), (E1) = ¢.(E2). Thus, the image ¢(M;) is a
complex curve in C™~1,
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Since 2, = Vg,-g,z = B3 — B4 = (4,4,0,...,0) on M; (with t = 0), (5.19)
yields 8f/8s = 1. Thus
(5.20) f(s,w) = s+ fi(w)

for some complex-valued function f; = fi(w).
On the other hand, since z(M;) lies in the anti-de Sitter space time H:™ (1),
(5.19) implies
2i(fe— fc) =1+ ¥,
where O = U, ¥y + -+ + ¥, ¥, ;. Therefore, (5.20) yields
2i(s(c—c) + (fie - fic)) =1+ 97,

which implies that ¢ = ¢, i.e., c is a real number, and

(5.21) 2ic(fi — fi) = 1+ 00,
Hence
(5.22) (s, w) = s + k(w) Zig(l + D),

where k = k(w) is a real-valued function. Consequently, we obtain
1 =
(5.23) 2(s,0,w) = (c+ S+ D) +i(s + k(w)),
i -
et L (L+ U +ils + k(w)), \Il(w)).

Since 2z = 2.(F3), (5.15-1) implies 2z;; = 2iz; + z. Solving this differential
equation yields

(5.24) z = (Ao +tA)e,
where Ag, A; are constant vectors. From (5.23) and (5.24) we get
(5.25) Ag = 2(5,0,w), 2(s,0,w) =idg+ Ay.
On the other hand, since
(5.26) iAp+ A1 = 2 = B3 =12+ (1,1,0,...,0)

at t = 0, (5.23), (5.25) and (5.26) yield A; = (4,1,0,...,0). Therefore, (5.23),
(5.24) and (5.25) imply

(5.27)  z(s,t,w) = (c + :11—6(1 + UW) +i(s + t + k(w))

—c+ %(1 F ) +ifs + 4 k(w)), L))o
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If we regard s + ¢+ k(w) as a new variable and denote it by u, then (5.27) yields
(5.28)  z(s,t,w) = (c + l(1 + W) +ui, —c+ l(1 + U0 + ui \I:(w))e“
Y 40 bl 4c ? .

By choosing the initial conditions (0,0, 0) = (~1,0,...,0), we obtain from (5.28)
that ¢ = —1. Consequently, we obtain (3.5) from (5.28). Since z is an immer-
sion, (5.28) implies that ¥'(w) is nowhere zero. This completes the proof of the
theorem.

References

[1] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publ., Dordrecht, 1986.

[2] B.-Y. Chen, CR-submanifolds of a Kaehler manifold, I, II, Journal of Differential
Geometry 16 (1981), 305-322; 16 (1981}, 493-509.

[3] B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds,
Archiv der Mathematik 60 (1993), 568-578.

[4] B.-Y. Chen, A general inequality for submanifolds in complex-space-forms and its
applications, Archiv der Mathematik 67 (1996), 519-528.

[5] B.-Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Totally real submanifolds of
CP™ satisfying a basic equality, Archiv der Mathematik 63 (1994), 553-564.

[6] B.-Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, An exotic totally real minimal
immersion of S® in CP® and its characterization, Proceedings of the Royal Society
of Edinburgh, Section A 126 (1996), 153-165.

[7] B.-Y. Chen, G. D. Ludden and S. Montiel, Real submanifolds of a Kaehler manifold,
Algebras, Groups and Geometries 1 (1984), 176-212.

[8] B.-Y. Chen and B.-Q. Wu, Mixed foliate CR-submanifolds in a complex hyper-

bolic space are non-proper, International Journal of Mathematics and Mathematical
Sciences 11 (1988), 507-516.

[9] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic
space, Geometriae Dedicata 20 (1986), 245-261.



