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ABSTRACT 

T h e  first a u t h o r  in t roduced a R i e m a n n i a n  invariant  denoted  by 5 and  

proved in [4] t h a t  every n-d imens iona l  submani fo ld  of the  complex  

hyperbol ic  m- space  C H m  (4c) of cons tan t  holomorphic  sect ional  curva- 

tu re  4c < 0 satisfies a basic inequal i ty  

5< n2(n Z 2) H2 + 1 
- 2 ( n -  1) ~(n + 1 ) ( n -  2)c, 

where  H 2 denotes  the  squared  m e a n  curva tu re  of the  submanifo ld .  T h e  

ma in  purpose  of th i s  paper  is to complete ly  classify proper  C R - s u b m a n i -  

folds of  complex  hyperbol ic  spaces  which sat isfy  the  equal i ty  case of th is  

inequality.  
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1. I n t r o d u c t i o n  

For a Riemannian n-manifold M n denote by K(Tr) the sectional curvature of a 

plane section 7r C TpM n, p C M n. For an orthonormal basis e l , . . .  ,e~ of the 

tangent space TpM n, the scalar curvature T at p is defined by 

(1.1) ~- = ~ K(ei A ej). 
i<j  

For each point p �9 M n, let ( in fg) (p )  = inf { g(Tr): plane sections 7r C TpM n }. 
Then inf K is a well-defined function on M '~. Let 5M denote the difference 

between the scalar curvature and in fK,  i.e., 

(1.2) 5M(p) = T(p) - - inf  K(p). 

It is obvious that  (~M is a well-defined Riemannian invariant which is trivial when 

n < 2 (cf. [3, 4] for details). 

For a submanifold M n in a real space form Rm(c) of constant sectional 

curvature c, the following basic inequality involving the intrinsic invariant (~M 

and the squared mean curvature was first established in [3]: 

(1.3) 
n 2 (n - 2) H2 1 < + + 1 ) ( n -  2)c, 

where H 2 denotes the squared mean curvature. 

Let M be a submanifold in a Kaehler m-manifold _~/. A subspace V C TpM 
is called t o t a l l y  rea l  if JV c T~M, where TpM and Tp~M denote the tangent 

space and the normal space of M at p, respectively. The submanifold M is called 

t o t a l l y  rea l  if each tangent space of M is totally real. A totally real submanifold 

M in h:/ is called L a g r a n g i a n  if dimR M =dimc/1~/. A submanifold M of .~/ 

is called a CR-submanifold if there exists on M a differentiable holomorphic 

distribution 7) such that  its orthogonal complement 7:) • C T M  is a totally real 

distribution [1]. A CR-submanifold is called p r o p e r  if it is neither totally real 

(i.e., 7) • = TM) nor holomorphic (i.e., 7) = TM). 
It was remarked in [6] that  the exact proof of (1.3) given in [3] yields the 

same inequality for totally real submanifolds in a complex space form of constant 

holomorphic sectional curvature 4c, too. Moreover, it was proved in [4] that  

inequality (1.3) holds for arbitrary submanifolds of the complex hyperbolic m- 

space CHm (4c) of constant holomorphic sectional curvature 4c < 0. 

For simplicity, an n-dimensional submanifold of CHm (4c) is said to sa t i s fy  

t h e  bas ic  e q u a l i t y  if it satisfies the equality case of (1.3) identically. 
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Real hypersurfaces of a Kaehler manifold are proper CR-submanifolds. It was 

proved in [4] that  a real hypersurface of a complex hyperbolic m-space with m > 2 

satisfies the basic equality if and only if the real hypersurface is an open portion 

of a horosphere in a complex hyperbolic plane. 

In this paper we completely classify proper CR-submanifolds of complex hyper- 

bolic spaces which satisfy the basic equality. Moreover, we are able to establish 

the explicit representation of such submanifolds in an anti-de Sitter space time 

via Hopf's fibration. 

2. P r e l i m i n a r i e s  

Let /V/ be a pseudo-Riemannian manifold equipped with a pseudo-Riemannian 

metric t). Denote by V the metric connection of -~/and by ( , )  the inner product 

induced from the metric ~. A tangent vector X t o / ? / i s  called space-like (respec- 

tively, light-like or time-like) if (X, X) > 0 or X = 0 (respectively, if (X, X) -- 0 

and X ~ 0 or if (X, X) <0) .  

Let M be a submanifold of/1~/. If the metric tensor of/~/  induces a pseudo- 

Riemannian metric (respectively, Riemannian metric) on M, then M is called a 

pseudo-Riemannian (respectively, Riemannian) submanifold of/1}/. Let V denote 

the metric connection on M with respect to the induced metric. 

For vector fields X, Y tangent to the submanifold, we have the equation of 

Gauss: 

(2.1) (JxY -- V x Y  + h(X, Y), 

where h is the second fundamental form of M in 37/. The mean curvature vector 
...+ 

H of the immersion is given by 

-~ 1 
H =  - trace h. 

n 

A submanifold is said to be minimal if its mean curvature vector vanishes identi- 

cally. Denote by D the linear connection induced on the normal bundle T•  of 

M in/17/. For each vector field ~ normal to M, the Weingarten formula is given 

by 

(2.2) fTx~ = - A e X  + Dx~, 

where A is the shape operator. It is well-known that  the second fundamental 

form and the shape operator are related by (h(X, Y), ~) = (A~X, Y). 
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Denote by R and/~ the Riemann curvature tensors of M of h:/, respectively, 
and by R D the curvature tensor of the normal connection D. Then the equations 

of Gauss and Ricci are given respectively by 

(2.3) R(X,  Y; Z, W) = R(X,  Y; Z, W) + (h(X, W), h(Y, Z)) - (h(X, Z), h(Y, W)) 

and 

(2.4) RD( X, Y; ~, 7) = it(X, Y;~, 7) + ([A~, An](X), Y) 

for vectors X, Y, Z, W tangent to M and ~, ~7 normal to M. 
For the second fundamental form h, we define the covariant derivative Vh of 

h with respect to the connection on T M  ~ T •  by 

(2.5) (~Txh)(Y, Z) = n x  (h(Y, Z)) - h (VxY,  Z) - h(Y, V x Z ) .  

The equation of Codazzi is given by 

(2.6) (R(X, Y)Z)  • = ((7xh)(Y, Z) - (Vyh)(X,  Z). 

The Riemann curvature tensor of a complex space form )I7/(4c) of constant 

holomorphic sectional curvature 4c takes the form 

(2.7) 
[:t(X,Y)Z = c{(Y, Z) X - (X, Z )Y  + (JY, Z ) J X  - (JX, Z ) J Y  +2(X, J Y ) J Z } ,  

where J denotes the almost complex structure of 2t7/(4c). 

3. S t a t e m e n t  of  Main  Theorem 

Consider the complex number (m -t- 1)-space C~ n+l endowed with the pseudo- 

Euclidean metric go given by (for the details, cf. [7, 9]) 

m 

(3.1) 90 = -dzod2o + Z dzjd2j, 
j = l  

where 2k denotes the complex conjugate of zk. 
On C~ +1 we define 

m 

(3.2) F(z,w) = + Z 
k = I  

Put 

(3.3) H2m+l(-1) = {z = (zo, z l , . . . ,  Zm) E C~n+l : (z, z) --- -1},  
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where ( , )  denotes the inner product on C~ +1 induced from go. Then H 2m+1(-1) 

is a real hypersurface of C m+l whose tangent space at z E H~m+l( -1)  is given 

by TzH2m+l( -1)  = {w C Cm+l: Re F ( z , w )  = 0}. It is known that H2m+l ( -1 )  

together with the induced metric g is a pseudo-Riemannian manifold of constant 

sectional curvature - 1 ,  which is known as an anti-de Sitter space time. 

We put 

H 1 = {A �9 C: AA = 1}. 

Then we have an Hi-act ion on H2m+l( -1)  given by z ~ Az. At each point 

z in H12m+x(-1), the vector i z  is tangent to the flow of the action. Since go is 

Hermitian, we have Re 9o(iz, iz)  = -1 .  Note that the orbit is given by x( t )  = eitz  

and d x ( t ) / d t  = ix( t ) .  Thus the orbit lies in the negative definite plane spanned 

by z and iz .  The quotient space H12m+l/~, under the identification induced from 

the action, is the complex hyperbolic space C H  m ( - 4 )  with constant holomorphic 

sectional curvature -4 .  The almost complex structure J on CH TM ( -4 )  is induced 

from the canonical almost complex structure J on C~ +1 , the multiplication by 

i, via the totally geodesic fibration: 

(3.4) 7r: H2m+l( -x )  --+ CHIn(-4) .  

The main result of this paper is the following. 

MAIN THEOREM: Let  U be a domain of  C and tp : U --+ C m-1 be a nonconstant  

holomorphic  curve in C m-1  . Define z: R 2 • U --+ C~ n+l by 

(3.5) z ( u , t , w ) :  ( - 1 - ~ ( w ) ( P ( w ) + i u , - ~ P ( w ) ~ ( w ) + i u , ~ P ( w ) ) e  i~. 

Then  (z, z) = - 1  and the image z(R 2 x U) in H 2m+l is invariant under the group 

action o f  H 1. Moreover, away from points  where ~ ( w )  = O, the quotient  space 

z(R 2 x U ) / ~  is a proper  CR-submani fo ld  of CHin( -4 )  which satisfies the basic 

equality. 

Conversely, up to rigid mot ions  of  C H m  ( -4 ) ,  every proper  C R-submani fo ld  o f  

C H m  ( - 4 )  sat is fying the basic equali ty  is obtained in such way. 

Since, up to rigid motions of CHIn(-4) ,  a horosphere in C H m ( - 4 )  is a real 

hypersurface defined by the equation ]Zx - z0[ = 1, Theorem 1 can be regarded 

as a natural extension of a result of [4] which states that a real hypersurface of 

CHm ( - 4 )  with m _> 2 satisfies the basic inequality if and only if it is an open 

part of a horosphere in CH 2 ( -4) .  
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4. S o m e  l e m m a s  

First we recall the following result from [2]. 

LEMMA 1: Let M be a CR-submanifold of a Kaehler manifold ~/I. Denote by 

T•  M = JD • | u the orthogonal decomposition of the normal bundle, where 7) • 

is the totally real distribution and u a complex subbundle of T•  M.  We have 

(4.1) 

(4.2) 

(4.3) 

<VuZ, X> = ( J ( A j z U ) ,  X>, 

A j z W  = A j w Z ,  

A j a X  -=- - A J X ,  

for vector fields Z , W  in 13J-, ~ in u, U in T M  and vector field X in the 

holomorphic distribution 13. 

We also need the following two results from [4]. 

LEMMA 2: Let x: M ~ CHm(-4) be an isometric immersion of a Riemannian 

n-manifold M (n > 3) into the complex hyperbolic m-space CH'~(-4). Then 

(4.4) n 2 (n -- 2) H2 1 
~M ~ 2-~-'----15 --  ~ ( n n t - 1 ) ( n - - 2 )  �9 

Equality in (4.4) holds at a point p E M if and only if  there exist an orthc~ 

normal basis { e l , . . .  ,en} of TpM and an orthonormal basis {en+l,... ,e2m} of 

T~  M such that (a) the subspace spanned by e3,.. . ,  e,~ is totally real, (b) K(el A 
c2) = infK at p, and (c) the shape operators Ar = A~ r, r = n + 1,. . . ,  2m take 
the following forms: 

h12 h~2 0 . . .  

(4.5) A t =  \ i" 0 # r 0 .  0" "'" ~ ' . . . " "  r r = n + l , . . . , 2 m ,  

where #r = h~l + h~2. 

LEMMA 3: Let x: M --+ CHIn(-4) be an isometric immersion of a Riemannian 

n-manifold M (n > 3) into the complex hyperbolic m-space CHm (-4). I f  there 

exists a point p E M such that 

n 2 (n - 2) H2 1 (4.6) 5M -- -~-_--~ -- ~(n + 1)(n -- 2), 



Vol. 110, 1999 CR-SUBMANIFOLDS 347 

at p, then m > n - 1. Furthermore,  i f  m -- n - 1 and (4.6) holds identically, then 

M is a CR-submani fo ld .  

We also need the  following lemmas.  

LEMMA 4: Le t  x: M --+ C H m ( - 4 )  be a CR-subman i fo ld  wi th  dimension n >_ 3. 

I f  M satisfies the  basic  equality, then one o f  the following three cases m u s t  occurs: 

(1) n = 3, 

(2) M is a min imal  proper  CR-submani fo ld ,  or 

(3) M is a to ta l ly  real  submanifold.  

Proof'. Assume  t h a t  M is a CR-subman i fo ld  of C H m  ( - 4 ) .  Then ,  accord ing  to  

L e m m a  2, e i ther  M is t o t a l l y  real  o r / )  = :  Span  {el ,  e2} defines the  ho lomorph ic  

d i s t r ibu t ion ,  where  { e l , . . . ,  e~ } is an o r thono rma l  f rame field on M men t ioned  in 

L e m m a  2. We denote  b y / 9  • the  to t a l ly  real  d i s t r i bu t ion  spanned  by e3,. �9 �9 en. 

Suppose  t h a t  n > 3 and M is not  t o t a l l y  real.  Then  wi thou t  loss of genera l i ty  

we m a y  assume e2 = ge l .  

We div ide  the  p roof  into two cases. 

CASE l :  m = n -- 1. In  this  case, we have T X M  = J13 • If we choose e 3 

in such way t h a t  Je3 = e~+l which is para l le l  to the  mean  curva tu re  vector ,  

then  # r  = 0 for r = n + 2 , . . . ,  2m. Therefore,  f rom (4.2) and  (4.5), we o b t a i n  

#n+le4 = Ade3e4 = Age4e3 = 0 which implies  t h a t  M is min imal .  

CASE 2: m _> n. In  this  case, there  is a complex  subbund le  u of the  no rma l  

bund le  p e r p e n d i c u l a r  to J:D • such tha t  T X M  = d l )  • • u. From (4.3) we know 

tha t ,  for each vector  ~ C u, we have 

(4.7) 

Therefore  

A j f e l  = - A f e 2 ,  A j f e 2  = A f e l .  

(4.8) (A j~e l ,  e l )  + (Ague2, e21 = - ( A e e 2 ,  e l / q -  (A~el  , e21 = O, 

which impl ies  t h a t  the  mean  curva ture  vector  H lies in J:D • Hence,  we m a y  

choose e3 such t h a t  Je3 is para l le l  to H .  Thus,  by app ly ing  (4.2) again ,  we also 

have #n+le4  = Aje3e4 = A j e t e 3  = 0. Therefore,  in this  case M is also a m i n i m a l  

p rope r  C R - s u b m a n i f o l d  of  C H  m ( - 4 ) .  | 
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LEMMA 5: Let  x: M --4 CHIn( -4 )  be a CR-submani fo ld .  I f  M satisfies the basic 

equal i ty  and dim M > 3, then M is a total ly  real submanifold.  

Proof: Assume that  M is a proper CR-submanifold of C H m ( - 4 )  which 

satisfies the basic equality and d i m M  > 3. Denote by 7) = Span {el,e2} the 

holomorphic distribution. Then, by applying (4.1), Lemma 2 and Lemma 4, we 

have 
(Ve~ el -- Vel e2, Z) ---- (Vel Z, e2) - ( ve~ Z, el ) 

--- ( J ( A j z e l ) ,  e2} - ( J ( A j z e 2 ) ,  el)  

= (h(el ,  el) + h(e2, e2), J Z )  = O. 

Therefore, [e2, el] C 7) and hence 7) is integrable. From Lemma 2, we also have 

h(7), 7)2_) = {0}, i.e., M is mixed totally geodesic. Hence, M is a mixed foliate 

CR-submanifold of CHm ( -4 )  (cf. [1, 2]). The lemma now follows from a theorem 

of Chen and Wu [8] which states that every mixed foliate CR-submanifold in a 

complex hyperbolic space is non-proper. | 

LEMMA 6: Let  x: M 3 --4 CH'~ ( -4 )  be a 3-dimensional proper  CR-subman i fo ld  

o f  C H  m ( -4 ) .  I f  M satisfies the basic equality, then H E  j T ) z .  

Proof." If m -- 2, there is nothing to prove. So, we assume m > 2. Hence, there 

is a complex subbundle v of the normal bundle perpendicular to JT)• such that  
T i M  = JT)•  (~ u. 

If H e  JT)• then there exists a nonzero normal vector field ~ E u such that  

(4.9) H =  aJe3  + ~, 

where a is a function and JT)• = Span {Je3}. Without loss of generality, we 

may assume e2 --- J e l .  As in Case 2 of Lemma 5, we deduce from (4.3) that  

(4.10) (Ace1, el)  + (Aee2, e2) = (Ajee2, el) - (Ajcel ,  e2) = 0. 

Applying (4.10) and Lemma 2, we obtain trace A~ = 0, which implies (H, ~) = 0. 

This is a contradiction. Therefore, H lies in JT)• II 

LEMMA 7: Let  x: M --+ CHIn( -4)  be a CR-submani fo ld  wi th  n = d i m M  ~ 3. 

I f  M satisfies the basic equality, then one o f  the following two cases m u s t  occurs: 
. . .r 

(1) n = 3, M is a proper  CR-submani fo ld  wi th  H E  J7) •  and, moreover,  

the holomorphic  distr ibution 7) is non-integrable on every n o n - e m p t y  open 

subset  o f  M .  
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(2) n >_ 3 and M is a totally real submanifold with H I  J l )  • 
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Proof." Under the hypothesis, if M is a proper CR-submanifold of C H I n ( - 4 ) ,  

then Lemma 5 implies that  either n = 3 or M is totally real. 

If n is 3 and M is not totally real, then Lemma 6 implies that  H E  J:D • 

In this case, we deduce from (4.3) that  the holomorphic distribution of M is 

non-integrable on every non-empty open subset of M. 

If M is totally real, we have HA_ J:D • according to Theorem 1.2 of [5]. I 

LEMMA 8: Let x: M 3 -+ C H ' ~ ( - 4 )  be a 3-dimensional proper CR-submanifold 

of CHm ( -4 ) .  I f  M satisfies the basic equality, then M has parallel mean curva- 
--4 

ture vector, i.e., D H =  O. 

Proo~ Under the hypothesis, we have H E  J:D • according to Lemma 6. Thus, 

Lemma 2 implies h(X,  e3) E J / ) •  for any X tangent to M. Hence, using 

- A j e 3 X  + D x ( J e 3 )  = fYx(Je3)  = J ( V x e 3 )  + h(X,  e3), 

we obtain D x ( J e a )  C J g •  for any X C T M .  Since J:D • is of rank one and Je3 

is of unit length, this yields D ( J e 3 ) , =  0. Thus, Jea is a parallel normal vector 

field. Since H is parallel to Je3, it suffices to prove that  the mean curvature 

vector field has constant length. 

If ra = 2, our assumption and Theorem 6 of [4] implies that  M is an open 

part  of a horosphere in C H  2 ( -4 ) .  In this case, by a direct computat ion we have 
- +  

H =  4 Je3. Therefore, M has parallel mean curvature vector. 

If  m >__ 3, then T i M  = J:D x @ u for some complex subbundle v. Let ~ be a 

unit vector in u and X, Y vectors tangent to M. Then we have 

(4.11) /~(X,Y; Je3,~) = R D ( x , Y ;  Je3,~) = 0 

by virtue of (2.7) and D(Je3)  = 0. Hence, the equation of Ricci yields 

[Ajr -- 0 for any ~ E v. By Lemma 2, this implies that  with respect 

to a suitable orthonormal frame field with e2 = Je l  and e4 = Je3 the shape 

operators of M in C H  m ( - 4 )  either take the form: 

(4.12) AJe3 = a 0 , Ar : [h~2 -h~ l  , r =  5 , . . . , 2 m ,  
0 2a 0 
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or take the form: 

( 00) 0 
(4.13) AJe3 = b 0 , Ar = - h ~ l  , r = 5 , . . . , 2 m ,  

0 tt 0 

where a ~ b and a +  b = #. 

If the shape operators take the form of (4.13), then, for any ~ E v, (4.3) yields 

A j ~ e l  = -A~e2 .  Combining this with (4.13) we obtain A5 . . . . .  A2m = 0. 

Since Je3 is a parallel normal vector field, this implies that  M is contained in 

a totally geodesic complex hyperbolic plane CH 2 ( -4 )  of CHm ( -4) .  Thus, our 
4 assumption implies that  M is an open part of a horosphere. Therefore, H =  5Je3 

which is a parallel normal vector field. 

If the shape operators take the form of (4.12), there exists an orthonormal 

frame field {el, e2 , . . . ,  e2m} such that the second fundamental form satisfies 

(4.14) h ( e l , e l ) = a J e a + r  h ( e l , e 2 ) = r  h ( e l , e 3 ) = O ,  

h(e2,e2) = aJe3 - r h(e2,e3) --- 0, h(e3,e3) -- 2aJe3, 

where r is a function and ~ is in v. 

Using (4.14) and D(Je~)  = O, we get 

(4.15) (~'elh)(e3, e3) = 2(ela)Je3,  

(~'e3h)(el, e3) -- -2a<Ve3el, e3>Je3 - <Ve3e3, el>(aJe3 + r - r e2>J~. 

The equation of Codazzi, (2.7) and (4.15) yield 

(4.16) r el> = r e2> = 0. 

If r _= 0 on M, D(Je3 )  = 0 and (4.14) imply that M is contained in a totally 

geodesic complex hyperbol}c plane C H  2 ( -4) .  Thus, M is an open part of a 

horosphere. Hence, we know that M has parallel mean curvature vector as before. 

If r ~ 0, we put V = {p E M: r r O}. Then (4.16) implies Ve3e3 - 0 on 

V. Hence, by using D(Je3 )  = O, (4.16) and the equation of Codazzi, we obtain 

e la  = O. Similarly, we have e2a -= O. Therefore, [el, e2] a - 0. 

On the other hand, since 7) = Span (el ,  e2} is non-integrable on every non- 

empty open subset of M according to Lemma 7, the Lie bracket [el, e2] has a 

non-trivial component in the direction of e3 at every point in a dense open subset 

of M. Therefore, the condition [el,~2]a - 0 implies that e3a = 0 by continuity. 

Consequently, the function a must be a constant. Combining this we obtain 
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D(Je3) = 0, thus we conclude tha t  the mean curvature  vector H= 4aJe3 is 

parallel in the normal  bundle. | 

A submanifold  is said to be l i n e a r l y  ful l  in  CHm ( - 4 )  if it does not  lie in any 

total ly geodesic complex hypersurface of CHm (--4). 

LEMMA 9: Let x: M 3 --+ C H I n ( - 4 )  be a linearly t.u11 3-dimensional proper CR- 

submanifold of C H m ( - 4 ) .  It" m _> 3 and M satis~es the basic equality, then, 

with respect to some suitable orthonormal frame field {el, e2 , . . . ,  e2m}, we have 

(4.17) h ( e l , e l ) = J e 3 + r  h (e l , e2 ) - - r  h(e l ,e3)=O,  

h(e2, e2) = Je3 - r h(e2, e3) = 0, h(e3, e3) -- 2Je3, 

~ e l e l  ~ oLe2~ ~ e l e 2  ~ --O~BI -- e3, ~ e i g 3  ~ e2~ 

(4.18) Ve~el = --/3e2 + e3, Ve~e2 = --/3el, Ve~e3 = - e l ,  

Veael = ~'e2, Ve3e2 = --~'el~ Ve3e3 = O, 

where a,/3, 7, r are functions such that r # 0 and ~ is in v. In particular, M has 

constant squared mean curvature H 2 = 16/9. 

Proof: Let x: M 3 --+ CH TM (--4) be a linearly full 3-dimensional proper  CR- 

submanifold of CHm  ( - 4 )  satisfying the basic equality. If  m >__ 3, then from the 

proof  of  L e m m a  8 we know that ,  with respect a suitable or thonormal  frame field 

with e~ = Jel and e4 = J e 3 ,  the second fundamental  form satisfies 

(4.19) h ( e l , e l ) = a J e 3 + r  h ( e l , e2 )= r  h(e l ,e3)=O,  

h(e2, e2) = aJe3 - r h(e2, e3) = 0, h(e3, e3) = 2aJe3, 

where r is a nonzero function, a is a constant ,  and ~ is in v. 

From (4.1) of L e m m a  1 and (4.19) we have 

(Velel ,  e3> = - ( V e l e 3 ,  el> = (Aj~3el, e2> = 0, 

<Vele2,e3> = --{Vele3,e2> = --{Aje3el,el> = - a ,  

which implies 

(4.20) V~lel  = ae2, V~le2 = - a e :  - ae3, 

for some funct ion a.  Similarly, we also have 

(4.21) V~2el -- -fie2 + ae3, Vr = - /3e l ,  

Ve~e3 = ae2~ 

Ve2e3 = - -ael  
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for some function ft. Using (4.19), (4.20) and (4.21), we find 

(4.22) ( V ~ h ) ( e ~ ,  e3) = a2 ge3 + ar 

(~'e~ h) (el, e3)  = --a2Je3 + ar 

On the other hand, (2.7) yields/t(e~, e2, e3, Je3)  = 2. Thus, by (4.22) and the 

equation of Codazzi, we obtain a 2 = 1. Replace e3 by - e3  if necessary; we have 

a = 1. Thus, (4.19) yields (4.17). From (4.20), (4.21) and a = 1, we obtain the 

first six equations in (4.18). 

Using (4.1) and (4.19) we get {Ve~e3,e~} = {g (Age~e3) , e i )  = 0 for i = 1,2. 

Hence, Ve3e3 = 0 which yields the last three equations of (4.18). | 

5. P r o o f  o f  t h e  M a i n  T h e o r e m  

Let U be a domain of C and ~: U --+ C "~-1 be a nonconstant holomorphic curve 

in C m-1 such that  k~'(w) is nowhere zero. Define z: ]~2 • U -+ C~ +1 by 

(5.1) z ( u , t , w ) =  ( - 1 - ~ ( w ) ~ ( w ) + i u , - ~ P ( w ) ~ P ( w ) + i u , ~ ( w ) ) e  it. 

Then {z, z} = -1 .  Thus, the image z(R 2 x U) of R 2 x U under z is contained in 

the anti-de Sitter space time H~m+l(-1) .  

Let w = x + i y  denote the standard coordinate of U c C. Then 

0 0 0 0 0 0 
(5.2) Ox - Ow + ~--@, ~ y  = i ~ w  - i - f f ~ .  

We obtain from (5.1) and (5.2) that  

z~ = (i, i, O)e it, z~ = iz ,  

(5.3) z~ = ( - ~ ( ~ ' ~  + ~ ' ) , - � 8 9  + @')e ~t, 

z~ =~( -~ (~ '~  - ~ ' ) , - ~ ( ~ ' ~  - ~'1, ~')~'~. 

(5.4) 
Zuu = O, Zut = iZu, Zux = Zuy = O, 

Ztt = --Z, Ztx ~ iZx, Zty = i zy  

z~  = ( - ~ (~"~  + 2~'~' + ~"),-~(~"~ + 2~'~' + ~r ~")e", 

z~  = i ( ~ ( ~ "  - ~"~) , -~ (~"  - ~"~), ~")e'~, 

z~  = ( � 8 9 1 6 2  2~'~' + ~r � 8 9  2~'~' + ~") , -~")e '~ .  
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Let A--[~l[  and 

) ) (5.5) E 1  --~ -~ Zx - -  i ( ~ ( ~  ! --  ~ ' ( ~ ) Z u  , E 2  : -~ Zy - ( f f ~ '  ~- g J t ~ ) Z u  , 

E 3  = i z  q- Zu - -  z t  q- Zu ,  E 4  ~- i z  = z t .  

Then El,  E2, E3, E4 are orthonormal tangent vector fields such that E2 = • 

and iE3, iE4 are normal vector fields. 
It follows from (5.3), (5.4), (5.5) and a straightforward computation that the 

second fundamental form It of z(R 2 • U) in C~ +1 satisfies 

= 2-~{(k~"~ + 2k~'~' + q2~")iz~ + h(E1,E1) (0, 0, 2r177 

E2) = ~-~2 {i(k~"~ - ~ " ) i z ~  + (0, O, 2i~"e~t)• }, 

(5.6) h(E2,E2) = ~A12 {(g2"~ - 2k~'~' + ~ " ) i z ~  + (0, O, 2kl//leit) • 

~t(E1, Ea) = h(E2, Ea) = h(E1, E4) = h(g2, E4) = 0, 

h(E3,E3) = 2iE3 - iE4, h(Ea, E4) = iE3, h(E4, E4) -- iE4, 

where {.--}• denotes the normal component of {...}. 
On the other hand, from (5.3), (5.4), (5.5) and (5.6), we have 

(h(E1, El) ,  iE3) = (h(E1, El) ,  iE4) = 1. 

Therefore, there exist a function r and a unit normal vector field ~ perpendicular 

to iE3 and iE4 such that 

(5.7) h(E1, El)  = iEa - iE4 -b r 

From (5.6) and (5.7) we obtain 

(5.8) (0, 0, = + + A2r 

Similarly, we have 

(5.9) h(E2, E2) = iE3 - iE4 - r 

(5.10) (0, 0, igt"eit) • = 2 i ( ~  " - q2"~)izu + iA2r 

Since iz is always tangent to z(R 2 x U), the image z(R 2 x U) in H~m+l(-1)  is 
invariant under the group action of H i. Hence, z(R u x U) is projectable via the 
I-Iopf's fibration 7r: H 2m+1 ( -1)  --+ CH '~ (-4).  It is known that the Hopf fibration 
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is a Riemannian submersion. The image ~(z(~ 2 x U)) is a 3-dimensional proper 
CR-submanifold of CHm (-4) whose holomorphic distribution 7:) is spanned by 

~.(E1), ~r.(E2) and whose totally real distribution T) • is spanned by ~r.(E3). 
It follows from (5.5)-(5.10) that the second fundamental form h of 7r(z(~ 2 x U)) 

in CHm(-4 )  satisfies 

(5.11) h(el ,e l )  = Je3 + r h(el,e2) = cg~, h(e2,e2) = ge3 - r 

h(el, e3) = h(e2, e3) -- 0, h(e3, e3) = 2Je3, 

where ~ = r .(~) is a normal vector field perpendicular to Je3, el -- 7f.(E1) 

and e2 --- 7T.(E2). Therefore, by applying Lemma 2, we conclude that the 3- 
dimensional proper CR-submanifold ~(z(R 2 • U)) in CHm (-4)  satisfies the basic 

equality. 
Conversely, suppose that M is a proper CR-submanifold of CHm (-4)  with 

dim M > 3 which satisfies the basic equality. Then, according to Lemma 7, 

the dimension of M is equal to 3. Moreover, with respect to some suitable or- 

thonormal frame field (el, e2, . . .  ,e2m}, the second fundamental form h and the 

Riemannian connection V of M satisfy (4.17) and (4.18), respectively. Further- 

more, by Lemma 8, we have D(Je3) = O. 

Let .~/ = r - l ( M )  denote the inverse image of M via the Hopf fibration 

v:: H 2m+1 -~ CHm(-4 ) .  Then M is a principal circle bundle over M with 

time-like totally geodesic fibers. Let z: ~/--+ H2m+l(-1)  c C~ +1 denote the 

immersion o f / ~  in C~ +1 . 
Let V and V denote the metric connections of C~ +1 and H12m+1(-1), respec- 

tively. We denote by X* the horizontal lift of a tangent vector X of CH m (-4)  

with respect to ~7. Then we have (cf. [7, 9]) 

(5.12) Vx* Y* = (VxY)* + (h(Z,  Y))* + <JX, Y>Y + (X, Y}z,  

(5.13) V x . V  = ~TvX* = (JX)*,  

(5.14)  Tvy = - z ,  

for vector fields X, Y tangent to M, where z is the position vector of/V/in C 2m+1 

and V = iz �9 TzH2m+l(-1).  

Let El ,  E2, E3 be the horizontal lifts of el, e2, e3, respectively and let E4 = iz, 

and hence z -- iE4. Then, from Lemma 9, (5.12), (5.13) and (5.14), we obtain 

(5.15-a) ~TE1E1 = aE2 + iE3 + r - iE4, 

(5.15-b) ~TE, E2 = -aE1  - E3 + r + E4, 

(5.15-c) V~,E3 = ~TE, E4 = E2, 
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(5.15-d) ~TE2E1 ---- - ~ E 2  + E3 + r - E4, 

(5.15-e) ~TE2E2 -~ GEl + iE3 - r - iE4, 

(5.15-f) ~T E2E3 = ~7 E2E4 = - E l ,  

(5.15-g) ~ E, E1 ~- "/E2, 

(5.15-h) VE3E2 = - ~ E 1 ,  

(5.15-i) ~TE3E3 = 2lEa - iE4, 

(5.15-j) VE3E4 = iE3, 

(5.15-k) ~T E4E1 = E2, 

(5.15-m) ~TE4E2 = - E l ,  

(5.15-n) ~7 E4E3 = iE3, 

(5.15-0) (7 E4E4 = iE4. 

Equations (5.15-b), (5.15-c), (5.15-d) and (5.15-f)-(5.15-o) imply that the 

distribution ~)1 spanned by El,  E2, E3 - E 4  is integrable. The distr ibution/)2 
spanned by E3 is clearly integrable, since it is of rank one. Hence, there ex- 
ist coordinates {s, t, q, v} such that a/Os, O/Oq and O/Ov are tangent to integral 

submanifolds of/)1,  O/as = E3 - E4 and O/at = E3. 

Applying (5.15-c), (5.15-f), (5.15-i), (5.15-j), (5.15-n) and (5.15-o), we get 

v ~ l  (E3 - E4) = ~ (E3 - E4) = r  (E3 - E4) = 0. 

Hence, along each integral submanifold of/)1,  Z =: E3 - E4 is a constant light- 
like vector in C~ +1. Moreover, from (5.15-i) and (5.15-j), we have ~TE3Z = iZ.  

Since E3 -- a /a t ,  we get a z / a t  = i z .  Solving this differential equation yields 

(5.16) Z =e i tZo  on Jl)/, 

where Z0 is a light-like constant vector. Without loss of generality, we may 
assume Z0 = (i, i, 0 , . . . ,  0) E C~ +1. 

Let M1 be an integral submanifold of/)1.  Without loss of generality, we may 

assume that M1 is defined by t = 0. From (5.15-a)-(5.15-f), we obtain 

(5.17-a) 

(5.17-b) 

(5.17-c) 

(5.17-d) 

(5.17-e) 

VEIE1 = aE2 + r + iZ, 

(T E1E2 = - a E 1  + ir - Z, 

9 ~ 1 z  = 9 ~ z  = 0, 

9E2E1 = - f iE2 + ir + Z, 

~TE2E2 = •E1 - r + iZ, 
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(s.:;-f) - * VEI~ - - - - - eE l  ' V • "* "1- E1r , 

(5.17-g) ~TzE1 : ( ' y -  1)E2, 

(5.17-h) ~TzE2 = (1 - ~)E1, 

(5.17-i) ~TzZ = O, 

(5.17-j) - * • * VE2~ = r  + VE2~ , 
V• 

V z ~  = z s ,  (5.17-k) - * 

where V x denotes  the  normal  connection of M1 in C~ "~+1 . 

Along M1 we have tha t  

(5.18) 

<so, z> = <E3 - Ed, z)  = <E3 - Ed, - l E d >  = O, 

(Zo, iz )  = (E3 - Ed,  iz> = (E3 - Ed,  Ed> = - 1 ,  

(Zo, Zo> = <Zo, E1} = <Zo,E2> = (Zo, ~TxY> = O, 

where X , Y  E Span {Zo, EbE2} .  Since Zo is a constant  vector along M1, the 

above equat ions  imply tha t  M1 lies in a complex hyperplane which is parallel to  

{Zo} • Since {Zo} • is spanned by 

( i , i , 0 , . . .  ,0), (0 ,0 ,1 ,0  . . . .  , 0 ) , . . . ,  (0,0, 0 , . . .  ,0, 1), 

it follows tha t  we can write 

(5.19) z(s,O,w) =f(s,w)(i,i,O,... , 0 )  + c ( 1 , - 1 , 0 , . . .  , 0 )  

+ (o, o, ~(~o). . . ,  ~m-~(~)), 

where c is a constant  determined by the initial conditions and f ,  t I ' l , . . . ,  I,IJm_ 1 

are functions. 

Let r denote  the map  which is the project ion of z: M1 --~ C ~  +1 onto the 

complex Eucl idean (m - 1)-subspace C m-1 spanned by the last m - 1 s t andard  

coordinate  vectors s  i Cm+l of C ~  +1. Then  we have 

r  - Ea) = proj (z . (E3 - Ea)) = 0, 

which follows from the fact tha t  Z = E3 - E4 is constant  along M1 and 

z ( s , 0 , w )  = z o  = ( i , i , 0 , . . . , 0 ) .  

Since z . (E2)  = iz.(E1), we have i r  = r  Thus,  the image r  is a 

complex curve in C m-1 . 
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Since zs = fJEa-E4 z = E3 - E4 = ( i , i , 0 , . . . , 0 )  on M1 (with t -- 0), (5.19) 
yields Of/Os = 1. Thus 

(5.20) f (s ,  w) = s + f l  (w) 

for some complex-valued function f l  = f l  (w). 
On the other hand, since z(M1) lies in the anti-de Sitter space time H~ rn+l ( -1) ,  

(5.19) implies 

2 i ( f~ -  fc) = 1 + ~ ,  

where ~ = ~1~I  + ' "  + ~m-1~,~-1.  Therefore, (5.20) yields 

2i ( ~ ( e -  c) + ( f l~  - Lc ) )  = 1 + ~ , ,  

which implies that  ~ = c, i.e., c is a real number, and 

2ic(k - ]1) = 1 + ~ ' .  (5.21) 

Hence 

i 1 v~, ) ,  (5.22) f ( s , w )  = s + k(w) - ~ (  + 

where k = k(w) is a real-valued function. Consequently, we obtain 

( 1 (1 + ~ )  + i ( s  + k(w)), (5.23) z(s,  0, ~ )  = c + 

1 
- c + ~cc(1 + ~ )  + i(s + k(w)), ~(w)). 

Since zt = z,(E3), (5.15-i) implies Z t t  : 2izt + z. Solving this differential 

equation yields 

(5.24) z = (A0 + t n l ) e  ~t, 

where Ao, A1 are constant vectors. From (5.23) and (5.24) we get 

(5.25) A0 = z(s,O,w), zt(s,O,w) = iAo + A1. 

On the other hand, since 

(5.26) iAo + A1 = z~ = E3 = iz + (i, i, 0 , . . . ,  O) 

at t -- 0, (5.23), (5.25) and (5.26) yield A1 = ( i , i , 0 , . . . , 0 ) .  Therefore, (5.23), 

(5.24) and (5.25)imply 

(5.27) z ( s , t , w ) = ( c + l ( l + ~ 6 t ) + i ( s + t + k ( w ) )  

- c +  1 ( 1 +  k ~ )  + i ( s  + t +  k (w) ) ,~ (w) )e  u. 
/ 
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I f  we regard  s + t + k (w)  as a new variable and denote  it by u, then (5.27) yields 

By choosing the  initial condit ions z(0, 0, 0) = ( - 1 , 0 , . . . ,  0), we obta in  f rom (5.28) 

t h a t  c = - 1 .  Consequently,  we obta in  (3.5) from (5.28). Since z is an immer -  

sion, (5.28) implies t ha t  ~ ' ( w )  is nowhere zero. This  completes  the proof  of the  

theorem.  
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